

## Rotary Vane Feeder ZS50m-GM06 pilot + next gen. filament damage at prototype, predicted next gen. commercial performance

After geometric performance of STS-type feed wheels is confirmed, commercial product availability can now be predicted. The next generation STS-wheels will be made by stainless steel which should solve the given wear/damage problems of the weak filament-structure. Following the common star feeder experience where each of the star heads represents a tube-stripper, STS-wheel (ZS50-scale) in V2A/V4A will be equipped with 6 tube-strippers made from PTFE. These provide pressure-shock resistance as well as wheel-in-tube wear, transfer tube/case will be chromium-plated which also represents an option at decades experience.

|                                                                      | 1.19      |            | Mar and Share        |                    |                |  |  |  |  |
|----------------------------------------------------------------------|-----------|------------|----------------------|--------------------|----------------|--|--|--|--|
| ZS5                                                                  | 0m-GM, we | ear of vai | ne feeder drum (p    | rototype PETG fila | ament 1.7)     |  |  |  |  |
|                                                                      | position  | runs       | total grinding media | total time         | wear (locks)   |  |  |  |  |
| (a)                                                                  | 45°       | 70         | 50.382g              | 23min20s           | 48/245 (19,6%) |  |  |  |  |
| (b)                                                                  | 90°       | 70         | 55.112g              | 23min20s           | 09/245 (3,7%)  |  |  |  |  |
| (c)                                                                  | 45°+90°   | 140        | 105.494g (105,5kg)   | 46min40s           | 57/245 (23,3%) |  |  |  |  |
| T4, next gen. VFD to be printed in 1.4301/1.4404 by KAMI/Seoul/Korea |           |            |                      |                    |                |  |  |  |  |
|                                                                      |           |            | (b)                  |                    | (a)            |  |  |  |  |

<sup>[8]</sup> components & test-wheels, (b) STS-wheel after all test-runs in 90°-position, (a) STS-wheel from 45°-position testing correspondingly

As for wear res. damage during test-runs with the two STS-wheels, the wheel (a) after  $90^{\circ}$ -position testing showed 48 damaged compartments (locks) res. 48 steel-balls remained in the compartments. Much less damage is observed at wheel [8b], where 9 damaged compartments/steel-balls where counted. Each wheel carries 245 compartments, thus for [8a] a damage rate of 19,6% and for [8b] a damage rate of 3,7% is recognized. The insofar poor stability of [8a] may explain mismatches M01 and M02 at 45°-testing. Mismatches M03 and M04 in 90°-testing could not be explained by the 9 unavailable compartments since M03/04 did NOT appear at the end of the test-run. Again, geometric performance can be stated as proven/given.

Based on the available data on both, the present pilot-test STS as well as previous testing/experience with all ZSm-units, minima performance can be predicted. Rotary vane feeders ZS\*\*m-GM\* will soon be appropriate to providing precise packaging/portioning of grinding media at Simoloyer<sup>®</sup> auto-batch operation utilizing MediaReloadProcessing:

| unit-size ZS                                                                                                        | ZS25       | ZS40m-GM | ZS50m-GM | ZS63m-GM | ZS100m-GM   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------|----------|----------|----------|-------------|--|--|--|--|
| access surface E/A $\Delta$ -%                                                                                      | 24         | 66,6     | 100      | 165,3    | 416,4       |  |  |  |  |
| type GM est. minima                                                                                                 | 0,7 kg/min | 2 kg/min | 3kg/min  | 5kg/min  | 12,5 kg/min |  |  |  |  |
| for Simolover <sup>®</sup>                                                                                          | CM01       | CM08     | CM20     | CM20     | CM100       |  |  |  |  |
| loi Silloloyei                                                                                                      | (2kg)      | (8kg)    | (20kg)   | (20kg)   | (100kg)     |  |  |  |  |
| charging time                                                                                                       | (3min)     | Amin     | 6-7min   | 4min     | 8min        |  |  |  |  |
| (standard GU-size)                                                                                                  | too small  | 411111   |          |          |             |  |  |  |  |
| T5, prediction of automatic GM loading time for Simoloyer <sup>®</sup> CM08 - CM100. ZS25 is too small, CM01 may be |            |          |          |          |             |  |  |  |  |
| charged with ZS40 in 1min. For CM400 & CM900, ZS130 and ZS160 (KF-DN130/DN160) will be introduced.                  |            |          |          |          |             |  |  |  |  |

Next results to be published upon availability. References to follow, once this project is done.

Zoz Group, 31.08.2023